MAGEBEAN SECURITY BASELINE V1.0

Author: Son Cao
Date: 2025-08-01
Version: 1.0

Introduction
The Magebean Security Baseline defines 12 Controls and 81 Logic Rules to evaluate the
security, configuration, and dependency hygiene of Magento 2 stores.

These controls are explicitly designed to provide concrete verification steps to address
OWASP Top 10: The Ten Most Critical Web Application Security Risks.

This baseline is designed to be implemented with the magebean-cli tool, which provides
automated validation, reporting, and CI/CD integration.

Table of Contents

Introduction
Table of Contents
Chapter 1. Key Terminology
Control
Rule
Relationship Between Controls and Rules
Baseline
Scan and Audit
Chapter 2. Scope & Objectives
Scope
Intended Audience
Objectives
Chapter 3. Controls & Rules Catalog
Magebean 12 Controls
Rule Catalog (81 Rules)
MB-CO01 File & Folder Permissions (5 rules)
MB-R001 — No chmod 777 (High, AO5)
MB-R002 — Secure env.php permissions (High, A05)
MB-R003 — Webroot hygiene (High, A05)
MB-R004 — Restrict code dirs not writable (High, A05)
MB-R005 — No directory listing (Medium, A05)
MB-C02 Admin Hardening (6 rules)
MB-R006 — Non-default admin path (High, A07)
MB-R007 — Admin 2FA enabled (Critical, A07)
MB-R008 — Strong password policy (High, AQ7)
MB-R009 — Session timeout < 900s (Medium, AQ7)
MB-R010 — Limit admin exposure (Medium, A07)
MB-R011 — Login rate-limit (Medium, A07)
MB-CO03 Secure Coding Practices (14 rules)
MB-R012 — No raw SQL queries (Critical, A03)
MB-R013 — Template output escaping (High, A03)
MB-R014 — Avoid superglobals (High, A05)
MB-R015 — CSRF protection (High, A0O1/A05)
MB-R016 — SSRF safeguards (High, A10)
MB-R017 — Deserialization safety (High, A08)

O O OV VW 000N NNNWNDN

MB-R018 — Command injection guards (Critical, A03)

MB-R019 — No unsafe eval/dynamic code (Critical, AO3/A08)

MB-R020 — Path traversal protections (High, A01/A05)
MB-R021 — Secure file uploads (High, A08)

MB-R022 — JS-context escaping (High, A03)

MB-R023 — Cryptographically secure RNG (High, A02)
MB-R024 — Sensitive data not logged (High, A09)

MB-R025 — Use Magento APIs for crypto/session (Medium, A02/AQ07)

MB-C04 HTTPS & TLS Enforcement (5 rules)

MB-R026 — Force HTTPS (High, A02)

MB-R027 — HSTS header enabled (Medium, A02)

MB-R028 — TLS > 1.2 only (High, A02)

MB-R029 — No mixed content (Medium, A02)

MB-R030 — Secure cookies flags (High, A02/A07)
MB-CO5 Production Mode & Deployment Hygiene (6 rules)

MB-R031 — Magento in production mode (High, A05)

MB-R032 — No Xdebug on prod (Medium, A05)

MB-R033 — Display errors off (High, A05)

MB-R034 — Compiled DI enabled (Medium, AO5)

MB-R035 — Static assets deployed (Medium, A05)

MB-R036 — No dev configs on prod (High, A0O5/A08)
MB-C06 Cache & Indexing Health (5 rules)

MB-R037 — FPC enabled (High, A05)

MB-R038 — Redis/Varnish configured (Medium, AO5)

MB-R039 — Indexers READY (Medium, AO5)

MB-R040 — Hardened session storage (High, A05)

MB-R041 — No dev cache backends (Medium, AO5)
MB-C07 Logging & Monitoring (4 rules)

MB-R042 — Protect application logs (High, A09)

MB-R043 — Log rotation (Medium, A09)

MB-R044 — Safe exception handling (High, AO9/AQ5)

MB-R045 — PII sanitized in logs (High, AO9/A02)
MB-C08 Cron Job Reliability (3 rules)

MB-R046 — Crontab entries present (High, A05)

MB-R047 — Cron heartbeat healthy (Medium, AO5)

MB-R048 — Cron backlog threshold (Medium, AQ5)
MB-C09 Extension Vulnerability Management (12 rules)

MB-R049 — CVE match via OSV (Critical, A06)

MB-R050 — Core module advisories flagged (Critical, A06)

13
13
13
13
14
14
14
14
14
14
14
15
15
15
15
15
15
15
16
16
16
16
16
16
16
17
17
17
17
17
17
17
18
18
18
18
18
18
18

MB-R051 — Suggest fixed versions (High, A06)

MB-R052 — High-risk surface modules flagged (High, A06)

MB-R053 — Temporary mitigations documented (Medium, A06/A08)
MB-R054 — Known exploited vulns prioritized (High, A06)

MB-R055 — Transitive dependency CVEs flagged (Critical, A06)
MB-R056 — Constraints blocking fixes flagged (High, A06)

MB-R057 — Yanked/withdrawn versions flagged (High, A06)

MB-R058 — Outdated Marketplace extensions flagged (High, A06)
MB-R059 — Advisory age/patch latency reported (Medium, A06)
MB-R060 — Extension with no vendor support flagged (Medium, A06)

MB-C10 Abandoned Extensions Removal (4 rules)

MB-R061 — Abandoned on Packagist (High, A06)

MB-R062 — No release in >24 months (Medium, A06)
MB-R063 — Archived repositories (Medium, A06)

MB-R064 — Risky forks replacing originals (Medium, A06/A08)

MB-C11 Composer Dependency Hygiene (7 rules)

MB-R065 — No wildcard constraints (High, A06)
MB-R066 — No dev branches (High, A06)

MB-R067 — Stable by default (High, A06)

MB-R068 — Composer audit clean (High, A06)

MB-R069 — Direct deps up-to-date (Medium, A06)
MB-R070 — Lockfile integrity (Medium, A0)

MB-R071 — Disallow abandoned PHP libs (Medium, A06)

MB-C12 Third-party Config Security (10 rules)

MB-R072 — No secrets in VCS (Critical, AO8/A02)

MB-R073 — HTTPS-only endpoints (High, A02)

MB-R074 — Debug/verbose disabled in prod (Medium, A05)

MB-R075 — Webhook signature validation (High, A08/A07)

MB-R076 — Outbound allow-list enforced (High, A10/A05)

MB-R077 — PII minimization in configs (Medium, A02/A08)

MB-R078 — Payment gateway configs use strong TLS ciphers (High, A02)
MB-R079 — API keys stored in env.php, not DB/plaintext (High, A08)
MB-R080 — Third-party logging sanitized (Medium, AQ09)

MB-R081 — Cloud/Saas integrations restricted by ACL (Medium, AQ5)

Chapter 4. Implementation Guidance
Installation
Basic Usage
Output Formats
Cl/CD Integration

19
19
19
19
19
19
19
20
20
20
20
20
20
20
21
21
21
21
21
21
22
22
22
22
22
22
22
23
23
23
23
23
23
24
25
25
25
25
25

Operational Recommendations
Chapter 5. Severity & Risk Rating

Severity Levels

Risk Mapping

Usage in Reporting
References
Appendix C. Glossary of Terms

26
27
27
27
27
28
28

Chapter 1. Key Terminology
The Magebean Baseline v1 defines a set of 12 Controls and 81 Rules for auditing security,
configuration, and operations in Magento 2.

This chapter introduces the key terms used throughout the document, designed for
readers who may not be familiar with audit and AppSec terminology.

Control

A Control is a high-level domain of security assurance, representing a critical aspect of
application security or compliance (e.g., access control, data encryption, extension
governance). Controls group multiple verification checks or requirements under a common
theme, ensuring that all relevant risk areas are addressed.

Where a Control is missing or weak, risks inevitably emerge, making Controls the
foundation for preventing or mitigating application security risks.

Example:

Control: Password Management — requires strong password policies.

Control: Extension Governance — requires extensions to be free of known vulnerabilities.

Rule

A Rule is a specific, measurable check that determines whether a system complies with a
Control. Rules are typically automatable and serve as the unit of measurement for an audit.

Rules bring detail and precision, allowing evidence-based verification of compliance. A
Control may consist of multiple Rules.

Example:

Rule: Admin passwords must be at least 8 characters long and contain uppercase,
lowercase, numeric, and special characters.

Rule: Extension vendor/module found in composer.lock must not appear in any public CVE
list.

Relationship Between Controls and Rules

Each Control consists of multiple Rules that together enforce its intent.

Example:

Control: Administrator Account Security

Associated Rules:
Rule 1: Admin passwords must meet minimum complexity requirements.
Rule 2: Two-Factor Authentication must be enabled for all admin accounts.

Rule 3: No admin account should use the default username admin.

Baseline

A Baseline in the Magebean context is the consolidated standard consisting of 12 Controls
and 81 Rules. It represents the minimum recommended security posture for a Magento 2
deployment.

The baseline serves as a reference framework for developers, agencies, and merchants to
assess and improve their security posture.

Scan and Audit

Audit: The structured process of reviewing and evaluating a system against Controls and
Rules.

Scan: The technical execution (performed by Magebean CLI) of automated checks against
Rules, producing a report with findings and remediation guidance.

Chapter 2. Scope & Objectives

The Magebean Security Baseline is designed to establish a minimum security standard for
Magento 2 deployments.

It defines the scope, intended audience, and objectives of applying the 12 Controls and 81
Rules.

Scope

System Components: Magento 2 application codebase, extensions, server configuration,
dependencies, and integrations.

Security Domains: File permissions, admin interface hardening, secure coding practices,
cryptography, deployment hygiene, extension governance, and third-party integrations.

Environments: Applicable to development, staging, and production environments, with
emphasis on production hardening.

Intended Audience
Developers: To validate code quality and security practices before deployment.
Agencies: To ensure delivery quality, compliance, and client assurance.

Merchants: To monitor live stores and maintain operational security hygiene.

Objectives

- Provide a repeatable audit framework for Magento 2 security.
- Align Magento security checks with OWASP Top 10 and industry standards.
- Enable automated validation using magebean-cli in CI/CD pipelines.

- Facilitate remediation guidance and continuous improvement across teams.

Chapter 3. Controls & Rules Catalog

Magebean 12 Controls

MB-C01 File & Folder Permissions

MB-C02 Admin Hardening

MB-C03 Secure Coding Practices

MB-C04 HTTPS & TLS Enforcement

MB-C05 Production Mode & Deployment Hygiene
MB-C06 Cache & Indexing Health

MB-CO07 Logging & Monitoring

MB-C08 Cron Job Reliability

MB-C09 Extension Vulnerability Management
MB-C10 Abandoned Extensions Removal
MB-C11 Composer Dependency Hygiene

MB-C12 Third-party Config Security

Rule Catalog (81 Rules)
MB-CO01 File & Folder Permissions (5 rules)

MB-R001 — No chmod 777 (High, AO5)

Magento project files and directories must never be world-writable using chmod 777.
Overly permissive permissions allow attackers or rogue processes to modify code and
configuration. Always apply least-privilege settings, restricting write access to only the

system user that runs Magento.

MB-R002 — Secure env.php permissions (High, A05)

The app/etc/env.php file contains sensitive credentials, including database and encryption
keys. It should be restricted to mode 640 or stricter, owned by the correct application user

10

and group. Insecure permissions may expose secrets to unauthorized local users or
processes.

MB-R003 — Webroot hygiene (High, A05)

The webroot (pub/) must be free of leftover developer artifacts such as .git, .env, or backup
files. These files often reveal credentials, configuration details, or source code. Attackers
frequently probe for them as an easy first step to compromise.

MB-R004 — Restrict code dirs not writable (High, A05)

Core application directories like app/, vendor/, and lib/ must be read-only for the web
server user. If writable, an attacker exploiting Magento could plant malicious PHP code
directly into dependencies. Enforcing read-only integrity helps prevent supply-chain style
compromises.

MB-R005 — No directory listing (Medium, A05)

Public web directories should not allow automatic directory indexing. Directory listing can
expose file names, configuration fragments, and sensitive assets. Ensure the web server
(Nginx/Apache) is configured to return 403/404 for requests without index files to reduce
information leakage.

MB-C02 Admin Hardening (6 rules)

MB-R006 — Non-default admin path (High, AQ7)

The default /admin path is predictable and targeted by bots and automated scanners.
Configuring a custom backend route significantly reduces attack surface. It forces attackers
to guess the admin location, improving security against brute-force and credential stuffing
attempts.

MB-R007 — Admin 2FA enabled (Critical, A07)

Two-Factor Authentication (2FA) is required to secure administrative logins against stolen
or weak credentials. Enabling Magento_TwoFactorAuth enforces a second verification step,
making it far harder for attackers to hijack accounts even if passwords are compromised.

MB-R008 — Strong password policy (High, A07)

Administrative accounts must use passwords with minimum length and complexity
requirements. Enforcing rules for length, mixed characters, and rotation reduces the risk of
brute-force attacks. Weak policies leave accounts vulnerable to dictionary or credential
stuffing techniques.

11

MB-R009 — Session timeout < 900s (Medium, A07)

Idle admin sessions should expire within 15 minutes to limit the window of abuse. Long
session lifetimes make it easier for hijacked cookies or unattended terminals to be
exploited. A strict timeout reduces exposure in case of compromise.

MB-R010 — Limit admin exposure (Medium, A07)

The admin route should not be publicly discoverable or exposed unnecessarily. Blocking
default redirects, disabling /admin fallbacks, and restricting access with firewalls or IP
allow-lists reduce discovery by attackers and automated scans.

MB-R011 — Login rate-limit (Medium, A07)

Implement rate-limiting or CAPTCHA to prevent unlimited login attempts on the admin
panel. Brute-force and credential stuffing are common attack vectors. Throttling login
attempts helps slow automated attacks and improves defense-in-depth when combined
with strong credentials.

MB-C03 Secure Coding Practices (14 rules)

MB-R012 — No raw SQL queries (Critical, A03)

Directly concatenating variables into raw SQL queries introduces SQL injection risks.
Magento provides database abstraction layers and bound parameters that must be used.
Detecting and avoiding raw SQL ensures input is sanitized, protecting against data theft or
manipulation.

MB-R013 — Template output escaping (High, A03)

Values printed in PHTML templates must be properly escaped using $block->escapeHtml(),
escapeHtmlAttr(), or similar functions. Without output escaping, user-controlled data may

trigger cross-site scripting (XSS). Escaping prevents malicious scripts from executing in the

browser context.

MB-R014 — Avoid superglobals (High, A05)

Using PHP superglobals like $_GET or $_POST directly bypasses Magento's filtering and
validation mechanisms. Developers should rely on Magento’s request API or input filters.
Superglobals increase the attack surface for injection and cross-site scripting if not
sanitized properly.

12

MB-R015 — CSRF protection (High, A01/A05)

All form submissions and POST requests must include Magento's built-in form key
validation. Without Cross-Site Request Forgery (CSRF) tokens, attackers can trick logged-in
users into performing unintended actions. Enforcing CSRF checks protects critical
workflows like checkout or admin actions.

MB-R016 — SSRF safeguards (High, A10)

External HTTP requests must restrict target hosts and validate URLs. Without safeguards,
attackers can abuse Server-Side Request Forgery (SSRF) to reach internal services or
metadata endpoints. Implement allow-lists, strict protocols, and timeouts to reduce this
risk.

MB-R017 — Deserialization safety (High, A08)

PHP's unserialize() can lead to arbitrary code execution if user-controlled input is
deserialized. Use J[SON or Magento’s safe serializers instead. Any unavoidable use of
unserialize must enforce allowed class whitelists to prevent gadget chains and object
injection.

MB-R018 — Command injection guards (Critical, A03)

Dangerous functions like exec(), shell_exec(), or system() must never execute
user-controlled input. Attackers may inject arbitrary shell commands. If shell usage is
unavoidable, inputs must be sanitized against strict allow-lists. Safer alternatives are
preferred wherever possible.

MB-R019 — No unsafe eval/dynamic code (Critical, AO3/A08)

Functions like eval(), assert(), or create_function() should not be used with dynamic input.
They allow arbitrary code execution and are a common vector in malware. Modern PHP
and Magento provide safer alternatives to handle dynamic behavior securely.

MB-R020 — Path traversal protections (High, A01/AQ05)

File access functions (fopen, file_get_contents, etc.) must validate and normalize paths.
Without protections, attackers can perform directory traversal (../) to read or overwrite
sensitive files. Always use realpath() checks and enforce base directory allow-lists.

MB-R021 — Secure file uploads (High, A08)

Upload handlers must validate MIME types, enforce extension allow-lists, limit file size, and
store files outside webroot. Attackers often upload PHP shells disguised as images. Files
should be re-encoded where possible and named randomly to avoid collisions.

13

MB-R022 — JS-context escaping (High, A03)

Variables injected into <script> blocks must be escaped with escape)s() or JSON-encoded
safely. Failing to escape JavaScript context enables reflected or stored XSS. This rule
ensures Magento templates protect users against malicious scripts in dynamic content.

MB-R023 — Cryptographically secure RNG (High, A02)

Security tokens, nonces, and session identifiers must use CSPRNG functions
(random_bytes, random_int). Insecure RNG (rand, mt_rand) can be predicted by attackers,
enabling replay or token guessing. Cryptographically secure generators are mandatory for
sensitive operations.

MB-R024 — Sensitive data not logged (High, A09)

Logs must not contain sensitive information such as passwords, API tokens, or card data.
Attackers with log access can exploit leaked data. Magento logging should use sanitization
filters and redact sensitive values before writing to files or monitoring systems.

MB-R025 — Use Magento APIs for crypto/session (Medium, A02/AQ07)

Magento provides APIs for encryption, hashing, and session handling. Using PHP's raw
openssl_encrypt or custom session logic introduces misconfigurations and weak defaults.
Always rely on platform-provided APIs to ensure consistency, upgrades, and strong security
defaults.

MB-C04 HTTPS & TLS Enforcement (5 rules)

MB-R026 — Force HTTPS (High, A02)

All storefront and admin endpoints must use HTTPS to protect data in transit against
eavesdropping and tampering. Enforce secure base URLs, redirect HTTP to HTTPS, and
ensure cookies are only transmitted over TLS to maintain confidentiality and integrity.

MB-R027 — HSTS header enabled (Medium, A02)

HTTP Strict Transport Security (HSTS) instructs browsers to always use HTTPS, preventing
downgrade and SSL-strip attacks. Configure a strong max-age, include subdomains where
appropriate, and preloading if eligible to ensure persistent TLS enforcement for returning
users.

14

MB-R028 — TLS > 1.2 only (High, A02)

Disable legacy protocols (SSLv3, TLS 1.0/1.1) and weak ciphers to reduce exposure to
known cryptographic flaws. Require TLS 1.2+ with modern ciphers, forward secrecy, and
robust key exchange settings to harden transport encryption across all entry points.

MB-R029 — No mixed content (Medium, A02)

Pages served over HTTPS must not load HTTP assets (scripts, styles, images). Mixed content
undermines TLS guarantees and enables injection. Audit templates and CDN references,
update asset URLs to HTTPS, and implement Content Security Policy to prevent accidental
regressions.

MB-R030 — Secure cookies flags (High, A02/AQ07)

Session and authentication cookies must set Secure, HttpOnly, and appropriate SameSite
attributes. These flags reduce leakage over plaintext channels and mitigate XSS-based theft
or CSRF abuse. Validate headers and Magento configuration to consistently apply cookie
protections.

MB-C05 Production Mode & Deployment Hygiene (6 rules)

MB-R031 — Magento in production mode (High, A05)

Production mode disables developer-specific features and optimizes performance. Running
Magento in developer mode on production systems exposes debug output and slows
execution. Always verify that production deployments explicitly set the correct mode to
reduce risk and improve stability.

MB-R032 — No Xdebug on prod (Medium, A05)

Debugging extensions like Xdebug should never run on production servers. They introduce
significant performance overhead and may expose sensitive data via traces or profiling
endpoints. Confirm that php.ini does not load debugging modules in live environments.

MB-R033 — Display errors off (High, A05)

PHP error reporting must be logged, not displayed to users. Displaying stack traces or
warnings reveals internal code paths and sensitive details. Ensure display_errors=0ff in
php.ini and configure Magento to mask detailed error messages in production.

15

MB-R034 — Compiled DI enabled (Medium, A05)

Magento’'s Dependency Injection (DI) compilation generates optimized factories for
production. Running without DI compilation forces runtime lookups, increasing attack
surface and latency. Ensure setup:di:compile is executed during deployment, and the
generated code is committed or built properly.

MB-R035 — Static assets deployed (Medium, AQ05)

Static view files (CSS, JS, images) should be deployed in advance using
setup:static-content:deploy. Without pre-deployment, Magento may generate assets on the
fly, leaking error details or causing downtime. Pre-built assets improve performance and
reduce misconfiguration exposure.

MB-R036 — No dev configs on prod (High, A05/A08)

Development configurations such as sandbox API keys, test SMTP servers, or verbose
logging must not remain in production. They often bypass security controls and can leak
sensitive data. Audit environment configs to ensure only production values are applied on
live systems.

MB-C06 Cache & Indexing Health (5 rules)

MB-R037 — FPC enabled (High, AQ5)

Full Page Cache (FPC) significantly improves performance and reduces backend load.
Disabling or misconfiguring FPC forces every request to hit PHP and the database, slowing
responses and exposing bottlenecks. Always ensure FPC is enabled and serving cached
content on production.

MB-R038 — Redis/Varnish configured (Medium, A05)

Magento supports advanced cache backends like Redis or Varnish. Without proper
configuration, stores rely on file-based cache, which scales poorly and risks corruption.
Using Redis or Varnish ensures faster cache invalidation, distributed caching, and higher
resilience under heavy traffic.

MB-R039 — Indexers READY (Medium, A05)

Magento relies on indexers for search, pricing, and catalog performance. If indexers remain
in “REINDEX REQUIRED" state, queries degrade severely, and features may fail. Regularly
monitor and reindex to ensure indexers are healthy and data is up-to-date in production.

16

MB-R040 — Hardened session storage (High, A05)

Session data should never be stored in insecure file paths or world-writable locations. Redis
with authentication or a database-backed session handler provides better isolation. Weak
session storage exposes the risk of hijacking or leakage of sensitive authentication tokens.

MB-R041 — No dev cache backends (Medium, AQ5)

File-based caching is acceptable for local development but not suitable for clustered or
production setups. Using file cache on shared hosts causes race conditions and stale
content. Ensure production systems are configured to use Redis or Varnish backends
exclusively.

MB-C07 Logging & Monitoring (4 rules)

MB-R042 — Protect application logs (High, A09)

Application logs must not be publicly accessible from the web. Attackers often scan for
exposed var/log or server log files to gather sensitive information. Configure web server
rules and file permissions to prevent direct download or browsing of log files.

MB-R043 — Log rotation (Medium, A09)

Large, unrotated log files can fill disks and cause denial of service. Rotation ensures logs are
archived, compressed, and safely stored. Configure logrotate or equivalent tools to prevent
excessive growth and maintain the availability of logging infrastructure.

MB-R044 — Safe exception handling (High, A09/AQ5)

Exceptions must not expose stack traces or internal details to end users. Instead, return
generic error pages while logging technical details securely. Exposed traces reveal file
paths, libraries, and vulnerabilities that aid attackers in reconnaissance.

MB-R045 — PIl sanitized in logs (High, A09/AQ2)

Logs must avoid storing personally identifiable information (PIl) such as names, emails, or
payment data. If logging user data is unavoidable, values must be masked or hashed.
Sanitizing logs reduces privacy risk and regulatory compliance issues.

17

MB-C08 Cron Job Reliability (3 rules)

MB-R046 — Crontab entries present (High, A05)

Magento relies heavily on cron jobs to run indexing, email sending, cache cleanup, and
scheduled tasks. Missing crontab entries break essential background processes, leading to
instability and delayed order processing. Verify that all required cron jobs are configured
and active.

MB-R047 — Cron heartbeat healthy (Medium, A05)

A cron heartbeat confirms that scheduled jobs are running on time. If the heartbeat is stale
or missing, tasks may be failing silently. Monitoring the cron schedule and alerting on
failures ensures the continuous operation of business-critical background jobs.

MB-R048 — Cron backlog threshold (Medium, A05)

Excessive pending cron jobs indicate performance or configuration issues. A growing
backlog delays time-sensitive tasks like order invoicing or email notifications. Regularly
audit the queue length and alert if thresholds are exceeded to maintain healthy job
execution.

MB-C09 Extension Vulnerability Management (12 rules)

MB-R049 — CVE match via OSV (Critical, A06)

Installed extensions must be scanned against OSV.dev and other vulnerability databases
for known CVEs. Unpatched vulnerabilities in third-party modules are one of the top entry
points for attackers. Regularly check advisories and flag modules with unresolved security
issues.

MB-R050 — Core module advisories flagged (Critical, A06)

Vulnerabilities in official Magento core modules or Adobe-maintained packages must be
tracked and patched immediately. Exploits against core components are widely
weaponized, making this category highly critical. Automated scanning should alert
whenever core advisories apply to the current version.

18

MB-R051 — Suggest fixed versions (High, A06)

When vulnerabilities are detected, stores should identify the patched version that resolves
the issue. Providing recommended fixed versions helps developers upgrade quickly and
avoid insecure builds. This minimizes exposure windows by guiding remediation paths
clearly.

MB-R052 — High-risk surface modules flagged (High, A06)

Modules handling payment, authentication, or customer data represent high-risk attack
surfaces. Even without known CVEs, they should be highlighted for extra scrutiny.
Prioritizing code reviews and updates for these modules reduces overall compromise risk.

MB-R053 — Temporary mitigations documented (Medium, A06/A08)

If patches are not yet available, temporary mitigations (e.g., disabling a feature, adding
firewall rules) should be documented and applied. This ensures critical vulnerabilities are
managed proactively, reducing risk while awaiting vendor-supplied fixes.

MB-R054 — Known exploited vulns prioritized (High, A06)

Vulnerabilities listed in CISA KEV or similar databases indicate active exploitation in the wild.
Such extensions must be patched or disabled immediately. Prioritizing known exploited
vulnerabilities is essential to reduce the likelihood of compromise by automated
campaigns.

MB-R055 — Transitive dependency CVEs flagged (Critical, A06)

Extensions often rely on third-party PHP libraries that may contain vulnerabilities.
Transitive dependencies must also be scanned for CVEs, not only top-level modules.
Attackers frequently exploit weaknesses in bundled libraries overlooked by store operators.

MB-R056 — Constraints blocking fixes flagged (High, A06)

Composer version constraints can prevent applying patched releases. Overly strict
constraints increase exposure windows by locking stores to insecure versions. Detecting
and warning about such conflicts helps maintainers adjust constraints and apply timely
updates.

MB-R057 — Yanked/withdrawn versions flagged (High, A06)

Composer packages marked as yanked or withdrawn should be flagged immediately.
Yanked releases often indicate serious defects or vulnerabilities. Continuing to run these
versions exposes stores to unpatched risks and should be remediated quickly.

19

MB-R058 — Outdated Marketplace extensions flagged (High, A06)

Marketplace modules without updates for long periods pose potential risks due to
unpatched security issues. Highlighting outdated extensions encourages maintainers to
review or replace them proactively. Staying current reduces the chance of silent exposure
to known flaws.

MB-R059 — Advisory age/patch latency reported (Medium, A06)

Track how long advisories have been available compared to patch adoption. Long patch
latency indicates operational risk. Reporting advisory age helps teams measure
responsiveness and prioritize overdue updates across extensions.

MB-R060 — Extension with no vendor support flagged (Medium, A06)

Modules from vendors who no longer provide updates or have abandoned maintenance
represent a critical long-term risk. Unsupported extensions should be flagged for
replacement. Relying on unmaintained code increases exposure to unresolved
vulnerabilities indefinitely.

MB-C10 Abandoned Extensions Removal (4 rules)

MB-R061 — Abandoned on Packagist (High, A06)

Extensions marked as “abandoned” on Packagist or Composer metadata should be
immediately flagged. Abandoned modules no longer receive updates or security patches,
leaving them permanently vulnerable. Replace such modules with maintained alternatives
to reduce long-term security exposure.

MB-R062 — No release in >24 months (Medium, A06)

Extensions with no new release or update in over two years are strong indicators of
abandonment. Old versions accumulate unpatched vulnerabilities over time. Monitoring
release activity ensures outdated, stagnant modules are reviewed for replacement or
removal.

MB-R063 — Archived repositories (Medium, A06)

GitHub or GitLab repositories marked “archived” signal that no further development will
occur. Depending on the archived code poses a serious risk as future vulnerabilities will

20

remain unaddressed. Such modules should be deprecated in production environments and
migrated away from.

MB-R064 — Risky forks replacing originals (Medium, A06/A08)

Forked modules maintained by unknown or unverified sources may lack security review.
Depending on these forks introduces supply chain risk if malicious code is inserted. Always
validate the reputation of maintainers and prefer official, actively supported repositories.

MB-C11 Composer Dependency Hygiene (7 rules)

MB-R065 — No wildcard constraints (High, A06)

Composer version constraints like * or dev-master allow uncontrolled upgrades,
introducing unexpected vulnerabilities. Strict, semantic versioning ensures dependencies
are predictable and security patches are applied consistently. Avoiding wildcards prevents
accidental installation of insecure or unstable releases.

MB-R066 — No dev branches (High, A06)

Depending on the development branches (dev-branch) pulls unstable, unreviewed code
into production. Such code may contain incomplete features or insecure implementations.
Production environments must rely only on tagged, stable releases that receive security
patches and long-term maintenance.

MB-R067 — Stable by default (High, A06)

Composer must be configured with prefer-stable=true to ensure stable packages are
selected over unstable ones. Without this, unstable libraries may be chosen during
dependency resolution. Enforcing stable preference reduces exposure to untested,
insecure builds.

MB-R068 — Composer audit clean (High, A06)

Running composer audit checks dependencies against known CVE databases. Stores should
fail builds if unresolved vulnerabilities are detected. Maintaining a clean audit report
ensures critical vulnerabilities are addressed proactively and reduces exposure to
compromised libraries.

21

MB-R069 — Direct deps up-to-date (Medium, A06)

Outdated direct dependencies accumulate unfixed vulnerabilities. Regularly updating core
libraries and Magento packages ensures access to the latest security patches. Monitoring
update frequency helps maintainers avoid lagging behind on critical dependency fixes.

MB-R070 — Lockfile integrity (Medium, AO8)

The composer.lock file should be committed to version control and remain consistent with
composer.json. Missing or outdated lockfiles cause uncontrolled dependency drift, leading
to insecure or inconsistent builds. Validating lockfile integrity ensures deterministic, secure
deployments.

MB-R071 — Disallow abandoned PHP libs (Medium, AQ06)

PHP libraries marked abandoned by maintainers should not remain in production. Relying
on unsupported libraries increases long-term risk as vulnerabilities will not be patched.
Audit dependency trees regularly and replace abandoned libraries with supported
alternatives.

MB-C12 Third-party Config Security (10 rules)

MB-R072 — No secrets in VCS (Critical, AO8/A02)

API keys, tokens, and credentials must never be committed to source control or copied into
sample configs. Secret exposure enables account takeover and data exfiltration. Use
environment variables, secret managers, and pre-commit scanners to prevent accidental
leaks across repositories.

MB-R073 — HTTPS-only endpoints (High, A02)

All third-party integrations—including payment, shipping, email, and analytics—must use
HTTPS with valid certificates. Plain HTTP exposes tokens and PIl to interception or
tampering. Validate endpoint schemes in configuration, enforce TLS at proxies, and block
insecure URLs during deployment.

MB-R074 — Debug/verbose disabled in prod (Medium, A05)

Third-party modules often include debug or verbose logging modes that reveal requests,
headers, or credentials. These settings must be disabled in production scopes. Audit
configuration per environment and verify no debug endpoints or inspector Uls are
reachable on public networks.

20

MB-R075 — Webhook signature validation (High, A08/A07)

Inbound webhooks must be authenticated using HMAC or signed tokens to prevent
spoofing. Without validation, attackers can forge events, trigger refunds, or alter orders.
Configure shared secrets, rotate periodically, and reject requests lacking correct signatures
or timestamps.

MB-R076 — Outbound allow-list enforced (High, A10/AQ05)

Egress traffic for integrations should be restricted to an allow-listed set of hostnames or IP
ranges. Unrestricted outbound requests increase SSRF blast radius and data exfiltration
risk. Enforce DNS pinning, firewall rules, or HTTP client allow-lists to constrain destinations.

MB-R077 — Pll minimization in configs (Medium, A02/AQ08)

Configuration values must avoid storing unnecessary personal data such as full addresses,
phone numbers, or payment metadata. Prefer transient tokens and references. Minimizing
PIl reduces breach impact, simplifies compliance, and limits incidental exposure through
logs, backups, or misconfigurations.

MB-R078 — Payment gateway configs use strong TLS ciphers (High, A02)

Payment integrations must negotiate modern TLS versions and recommended cipher
suites. Weak protocols or ciphers invite downgrade and interception attacks. Validate with
automated TLS scanners, monitor gateway announcements, and enforce strict security
profiles at load balancers and edge proxies.

MB-R079 — API keys stored in env.php, not DB/plaintext (High, A08)

Secrets should live in app/etc/env.php or a secret manager, never in database rows or
plaintext admin settings. Database-stored keys tend to proliferate across environments and
backups. Centralized storage simplifies rotation and restricts access via filesystem
permissions.

MB-R080 — Third-party logging sanitized (Medium, AQ09)

Integration logs should redact tokens, session IDs, customer identifiers, and request bodies
containing Pll. Many SDKs log full payloads by default. Configure allow-lists for safe fields,
enable masking filters, and periodically review log samples for accidental sensitive data
exposure.

23

MB-R081 — Cloud/SaaS integrations restricted by ACL (Medium, A05)

Accounts used for SaaS connectors must follow least privilege. Assign scoped API roles,
restrict IP ranges, and separate production from sandbox tenants. Over-permissioned API

users amplify blast radius when credentials leak, enabling destructive actions beyond the
integration’s intended purpose.

24

Chapter 4. Implementation Guidance

The Magebean CLI (magebean-cli) is the primary tool to operationalize this baseline.

It allows automated scanning of Magento 2 projects, validation of Controls and Rules, and
generation of actionable reports.

Installation

Magebean CLI is distributed as a self-contained .phar package.
It requires PHP 8.1+ and can be downloaded from the official Magebean distribution site.

wget https://files.magebean.com/magebean-cli.phar -O magebean.phar

chmod +x magebean.phar

Basic Usage

Run a scan against a Magento 2 installation:
./magebean.phar scan --path=/var/www/magento
--path specifies the root directory of the Magento 2 project.

The tool will automatically apply all 12 Controls and 81 Rules.

Output Formats

Magebean CLI supports multiple report formats:
CLI (default): Human-readable summary directly in the console.
JSON: Machine-readable output for integration.
HTML/PDF: Styled reports for auditors and stakeholders.

./magebean scan --path=/var/www/magento —--format=html

—--output=report.html

CI/CD Integration

Magebean CLI is designed to run inside CI/CD pipelines.

23

Exit codes are mapped to severity levels, allowing builds to fail when critical issues are
found.

Example GitHub Actions workflow:
jobs:
security-audit:
runs-on: ubuntu-latest
Steps:
- uses: actions/checkout@v3
- name: Run Magebean Audit

run: /path-to-file/magebean.phar scan --path=. --format=json

--output=report.json

Operational Recommendations

Audit Frequency: Run baseline audits before every release and weekly on production
environments.

Remediation Workflow: Prioritize fixes for Critical and High severity findings.

Version Control: Store reports in Cl artifacts for traceability and compliance.

Offline Mode: Magebean CLI runs fully offline to preserve privacy; CVE databases can be
updated manually when needed.

26

Chapter 5. Severity & Risk Rating

Each Rule in this baseline is assigned a severity level based on potential impact and
likelihood of exploitation.

This chapter explains the rating system to help prioritize remediation.

Severity Levels

Critical: Exploitation can lead to full system compromise, data breach, or payment fraud.
Must be remediated immediately.

High: Exploitation can cause significant security or operational risk, such as privilege
escalation or data leakage. Should be prioritized for remediation.

Medium: Exploitation has a limited impact or requires additional conditions. Important to
fix, but may be scheduled.

Low: Minor security hygiene issues or best practices. Fix as part of normal maintenance.

Risk Mapping

OWASP Top 10: Each Rule is mapped to a relevant OWASP category (e.g., AO1: Broken
Access Control, AO6: Vulnerable Components).

CVSS Alignment: Critical/High ratings generally align with CVSS base scores > 7.0, while
Medium/Low correspond to lower CVSS ranges.

Usage in Reporting
Magebean CLI can generate reports grouped by severity.

Exit codes may be configured for CI/CD pipelines (e.g., fail build if Critical issues are
detected).

Severity levels guide triage and remediation priorities for development and operations
teams.

27

References
OWASP Top 10 (2021) — https://owasp.org/Top10/
OWASP ASVS 4.0 — https://owasp.org/ASVS/
Magento 2 Documentation — https://developer.adobe.com/commerce/docs/

OSV.dev Vulnerability Database — https://osv.dev/

Appendix C. Glossary of Terms

Audit

A structured review process to evaluate a Magento system against Controls and Rules. In

Magebean CLI, an audit is executed via automated scans.
Baseline

The minimum recommended standard consists of 12 Controls and 81 Rules. It provides a

reference point for measuring Magento 2 security posture.
Control

A high-level category of checks that represents a key security or compliance area (e.g.,

Admin Hardening, HTTPS Enforcement).
Rule

A specific, measurable requirement that enforces a Control. Rules are automatable and

serve as the unit of compliance in an audit.
Scan

The technical execution of automated checks against all Rules, producing pass/fail results

and reports.

28

https://osv.dev/

OWASP Top 10

A globally recognized standard for the top ten most critical web application security risks

(2021 edition is referenced in this baseline).
CVE (Common Vulnerabilities and Exposures)

A standardized identifier for publicly known security vulnerabilities. Used in Magebean to

flag risky Magento extensions or dependencies.
Composer/composer.lock

PHP's dependency manager. The composer.lock file ensures deterministic dependency

versions. Weak constraints or outdated lockfiles can lead to insecure builds.
Extension (Magento Module)

A third-party or custom Magento add-on. Extensions increase functionality but may also

introduce vulnerabilities if unmaintained or insecure.
Dependency / Transitive Dependency

A software package required by Magento or its extensions. Transitive dependencies are

nested libraries pulled indirectly, often overlooked but exploitable.
Misconfiguration

An insecure or unintended system setting (e.g., display_errors=0n, HTTP enabled instead of

HTTPS). A common source of compromise.
Hardening

Strengthening security by reducing attack surface and enforcing best practices. Examples

include Admin Hardening and TLS Hardening.
2FA (Two-Factor Authentication)

An additional authentication step beyond passwords, required to secure Magento admin

logins.

29

CSRF (Cross-Site Request Forgery)

An attack where a user’s authenticated session is abused to perform unwanted actions.

Magento mitigates CSRF with form keys.
XSS (Cross-Site Scripting)

An injection attack where malicious scripts execute in the browser. Prevented by proper

output escaping in templates and JavaScript contexts.
SQL Injection (SQLi)

An injection flaw where unsanitized input alters database queries. Prevented by Magento’s

query abstraction and bound parameters.
SSRF (Server-Side Request Forgery)

An attack where the server is tricked into making unintended HTTP requests. Prevented by

allow-listing outbound destinations.
CSPRNG (Cryptographically Secure Random Number Generator)

A random generator suitable for security-sensitive tokens (e.g., random_bytes). Prevents

predictability in sessions or nonces.
Pll (Personally Identifiable Information)

Any data that can identify an individual (e.g., name, email, address). Must be protected and

never logged in plaintext.
HSTS (HTTP Strict Transport Security)

A security header forcing browsers to use HTTPS, preventing downgrade or SSL-stripping

attacks.

30

TLS (Transport Layer Security)

The cryptographic protocol that secures data in transit. Magebean requires TLS 1.2 or

higher with strong ciphers.

FPC (Full Page Cache)

Magento’s built-in caching mechanism. Ensures better performance and reduces backend

exposure.

Indexers

Magento background processes that pre-compute data (e.g., search, catalog, pricing). Must

remain healthy to avoid performance degradation.

Note: Magebean Security Baseline is an original framework authored by Son Cao.

It is aligned with OWASP standards but tailored specifically for Magento 2.
il

	MAGEBEAN SECURITY BASELINE V1.0
	Introduction
	Table of Contents
	Chapter 1. Key Terminology
	Control
	Rule
	Relationship Between Controls and Rules
	Baseline
	Scan and Audit

	Chapter 2. Scope & Objectives
	Scope
	Intended Audience
	Objectives

	Chapter 3. Controls & Rules Catalog
	Magebean 12 Controls
	Rule Catalog (81 Rules)
	MB-C01 File & Folder Permissions (5 rules)
	MB-R001 — No chmod 777 (High, A05)
	MB-R002 — Secure env.php permissions (High, A05)
	MB-R003 — Webroot hygiene (High, A05)
	MB-R004 — Restrict code dirs not writable (High, A05)
	MB-R005 — No directory listing (Medium, A05)

	MB-C02 Admin Hardening (6 rules)
	MB-R006 — Non-default admin path (High, A07)
	MB-R007 — Admin 2FA enabled (Critical, A07)
	MB-R008 — Strong password policy (High, A07)
	MB-R009 — Session timeout ≤ 900s (Medium, A07)
	MB-R010 — Limit admin exposure (Medium, A07)
	MB-R011 — Login rate-limit (Medium, A07)

	MB-C03 Secure Coding Practices (14 rules)
	MB-R012 — No raw SQL queries (Critical, A03)
	MB-R013 — Template output escaping (High, A03)
	MB-R014 — Avoid superglobals (High, A05)
	MB-R015 — CSRF protection (High, A01/A05)
	MB-R016 — SSRF safeguards (High, A10)
	MB-R017 — Deserialization safety (High, A08)
	MB-R018 — Command injection guards (Critical, A03)
	MB-R019 — No unsafe eval/dynamic code (Critical, A03/A08)
	MB-R020 — Path traversal protections (High, A01/A05)
	MB-R021 — Secure file uploads (High, A08)
	MB-R022 — JS-context escaping (High, A03)
	MB-R023 — Cryptographically secure RNG (High, A02)
	MB-R024 — Sensitive data not logged (High, A09)
	MB-R025 — Use Magento APIs for crypto/session (Medium, A02/A07)

	MB-C04 HTTPS & TLS Enforcement (5 rules)
	MB-R026 — Force HTTPS (High, A02)
	MB-R027 — HSTS header enabled (Medium, A02)
	MB-R028 — TLS ≥ 1.2 only (High, A02)
	MB-R029 — No mixed content (Medium, A02)
	MB-R030 — Secure cookies flags (High, A02/A07)

	
	MB-C05 Production Mode & Deployment Hygiene (6 rules)
	MB-R031 — Magento in production mode (High, A05)
	MB-R032 — No Xdebug on prod (Medium, A05)
	MB-R033 — Display errors off (High, A05)
	MB-R034 — Compiled DI enabled (Medium, A05)
	MB-R035 — Static assets deployed (Medium, A05)
	MB-R036 — No dev configs on prod (High, A05/A08)

	
	MB-C06 Cache & Indexing Health (5 rules)
	MB-R037 — FPC enabled (High, A05)
	MB-R038 — Redis/Varnish configured (Medium, A05)
	MB-R039 — Indexers READY (Medium, A05)
	MB-R040 — Hardened session storage (High, A05)
	MB-R041 — No dev cache backends (Medium, A05)

	MB-C07 Logging & Monitoring (4 rules)
	MB-R042 — Protect application logs (High, A09)
	MB-R043 — Log rotation (Medium, A09)
	MB-R044 — Safe exception handling (High, A09/A05)
	MB-R045 — PII sanitized in logs (High, A09/A02)

	MB-C08 Cron Job Reliability (3 rules)
	MB-R046 — Crontab entries present (High, A05)
	MB-R047 — Cron heartbeat healthy (Medium, A05)
	MB-R048 — Cron backlog threshold (Medium, A05)

	MB-C09 Extension Vulnerability Management (12 rules)
	MB-R049 — CVE match via OSV (Critical, A06)
	MB-R050 — Core module advisories flagged (Critical, A06)
	MB-R051 — Suggest fixed versions (High, A06)
	MB-R052 — High-risk surface modules flagged (High, A06)
	MB-R053 — Temporary mitigations documented (Medium, A06/A08)
	MB-R054 — Known exploited vulns prioritized (High, A06)
	MB-R055 — Transitive dependency CVEs flagged (Critical, A06)
	MB-R056 — Constraints blocking fixes flagged (High, A06)
	MB-R057 — Yanked/withdrawn versions flagged (High, A06)
	MB-R058 — Outdated Marketplace extensions flagged (High, A06)
	MB-R059 — Advisory age/patch latency reported (Medium, A06)
	MB-R060 — Extension with no vendor support flagged (Medium, A06)

	MB-C10 Abandoned Extensions Removal (4 rules)
	MB-R061 — Abandoned on Packagist (High, A06)
	MB-R062 — No release in >24 months (Medium, A06)
	MB-R063 — Archived repositories (Medium, A06)
	MB-R064 — Risky forks replacing originals (Medium, A06/A08)

	MB-C11 Composer Dependency Hygiene (7 rules)
	MB-R065 — No wildcard constraints (High, A06)
	MB-R066 — No dev branches (High, A06)
	MB-R067 — Stable by default (High, A06)
	MB-R068 — Composer audit clean (High, A06)
	MB-R069 — Direct deps up-to-date (Medium, A06)
	MB-R070 — Lockfile integrity (Medium, A08)
	MB-R071 — Disallow abandoned PHP libs (Medium, A06)

	MB-C12 Third‑party Config Security (10 rules)
	MB-R072 — No secrets in VCS (Critical, A08/A02)
	MB-R073 — HTTPS‑only endpoints (High, A02)
	MB-R074 — Debug/verbose disabled in prod (Medium, A05)
	MB-R075 — Webhook signature validation (High, A08/A07)
	MB-R076 — Outbound allow‑list enforced (High, A10/A05)
	MB-R077 — PII minimization in configs (Medium, A02/A08)
	MB-R078 — Payment gateway configs use strong TLS ciphers (High, A02)
	MB-R079 — API keys stored in env.php, not DB/plaintext (High, A08)
	MB-R080 — Third‑party logging sanitized (Medium, A09)
	MB-R081 — Cloud/SaaS integrations restricted by ACL (Medium, A05)

	Chapter 4. Implementation Guidance
	Installation
	Basic Usage
	Output Formats
	CI/CD Integration
	Operational Recommendations

	Chapter 5. Severity & Risk Rating
	Severity Levels
	Risk Mapping
	Usage in Reporting

	References
	Appendix C. Glossary of Terms

